7.428 (2), b = 9.108 (5), c = 11.550 (3) Å, $\beta = 96.71$ (3)°, V = 776 Å³, Z = 4; $R_F = 0.026$ for 782 Cu K α data]. Both groups worked with needle-shaped crystals of form (II) prepared from crystal-lization in aqueous methanol.

References

ABDEL KADER, M. M., ABDEL HAY, A., KAMEL, G., TALAAT, M. & FAYEK, K. I. (1970). Acta Biol. Med. Ger. 24, 1–11.

Acta Cryst. (1990). C46, 719-720

Structure of (2R,3R)-3-Acetoxy-5,7-dihydroxy-6-methylflavanone

BY M. C. CHENG, Y. S. CHENG, C. F. CHANG AND YU WANG*

Department of Chemistry, National Taiwan University, Taipei, Taiwan

(Received 5 April 1989; accepted 17 May 1989)

01

C2 C3

C4 C5

C6

C7

C8 C9

C10

C11

C12 C13

C14

C15 C16

017

C18

O19 O20

021

C22 O23

C24

Abstract. $C_{18}H_{16}O_6$, $M_r = 328\cdot32$, monoclinic, I2, $a = 14\cdot488$ (5), $b = 8\cdot034$ (1), $c = 14\cdot341$ (5) Å, $\beta = 110\cdot76$ (3)°, V = 1561 (2) Å³, Z = 4, $D_x = 1\cdot40$, $D_m = 1\cdot39$ g cm⁻³, $\mu = 1\cdot0$ cm⁻¹, F(000) = 680, T = 298 K, λ (Mo $K\alpha$) = 0.71069 Å, final R = 0.050 for 1827 reflections. The structure of a new flavanone (extracted from the heartwood of *Pinus morrisonicola*) was characterized by X-ray diffraction. All singleand double-bond characters are as expected for a flavanone structure. The saturated heterocyclic ring in the molecule is not planar. The acetoxy and phenyl groups make a torsion angle of 53·0°.

Experimental. Crystal (Fang, Chang & Cheng, 1987) $0.2 \times 0.3 \times 0.4$ mm, CAD-4 diffractometer. Unit cell: 25 reflections, 2θ range 19.58 to 23.56° . D_m by flotation (*n*-hexane/CCl₄). $2\theta_{\text{max}} = 60^{\circ}$. Ranges of *h*, k, l: -20 to 20, 0 to 11, 0 to 20, respectively. 2θ scan range $(1.4+0.7\tan\theta)^\circ$. Three standard reflections monitored every hour: variation < 2%. 2449 unique reflections, 1827 observed with $I > 1.5\sigma(I)$. R(F) =0.050, wR(F) = 0.037, S = 3.8. Weighting scheme from counting statistics. Structure solved by direct method using the MULTAN program. H atoms calculated according to the ideal geometry. Only one of the methyl H atoms and the hydroxyl H atoms are found in a difference Fourier map after isotropic refinement. $(\Delta/\sigma)_{\rm max} = 0.01.$ Peak in final map $< \pm 0.18$ e Å⁻³. Atomic scattering factors from International Tables for X-ray Crystallography (1974). Computing programs: NRCC SDP VAX Package (Gabe, 1985), MULTAN and ORTEP from

Enraf-Nonius (1979) Structure Determination Package. Atomic parameters are given in Table 1,[†] bond distances and angles in Table 2. A drawing of the molecule is shown in Fig. 1.

CLASTRE, J. (1964). C. R. Acad. Sci. 259, 3267-3269.

by D. SAYRE, pp. 506-514. Oxford Univ. Press.

VOGT, H. (1966). Arch. Gefluegelkd. 30, 283-298.

Kluwer Academic Publishers, Dordrecht.)

Cryst. B26, 1392-1397.

Oxford Univ. Press.

FISCHER, M. S., TEMPLETON, D. H. & ZALKIN, A. (1970). Acta

International Tables for X-ray Crystallography (1974). Vol. IV, pp.

SHELDRICK, G. M. (1982). Computational Crystallography, edited

SHELDRICK, G. M. (1985). Crystallographic Computing 3, edited by

G. M. SHELDRICK, C. KRÜGER & R. GODDARD, pp. 175-189.

55, 99, 149. Birmingham: Kynoch Press. (Present distributor

[†] Lists of anisotropic temperature factors of the non-hydrogen atoms, positional and isotropic thermal parameters of the H atoms and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51919 (12 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Atomic parameters and B_{eq} values

E.s.d.'s refer to the last digit printed.

$B_{eq} = \frac{8}{3}\pi^2 \sum_i \sum_j U_{ij} a_i^{\dagger} a_i^{\dagger} \mathbf{a}_j \cdot \mathbf{a}_j.$				
x	y	z	$B_{eq}(Å^2)$	
0.5622 (2)	0.68310	0.1532 (2)	4.6 (2)	
0·6382 (2)	0.6817 (6)	0.1178 (3)	3.7 (2)	
0.6592 (3)	0.5313 (6)	0.0843 (3)	3.9 (2)	
0.7368 (3)	0.5259 (6)	0.0500 (3)	3.8 (2)	
0.7966 (3)	0.6618 (6)	0.0502 (3)	3.9 (2)	
0.7718 (3)	0.8111 (6)	0.0829 (3)	4·2 (2)	
0.6905 (3)	0.8258 (6)	0.1155 (3)	3.6 (2)	
0.6584 (3)	0.9852 (6)	0.1389 (3)	3.9 (2)	
0.5616 (3)	0.9777 (6)	0.1550 (3)	4.0 (2)	
0.5598 (3)	0.8229 (6)	0.2151 (3)	3.9 (2)	
0·4720 (3)	0.8035 (6)	0.2456 (3)	4.0 (2)	
0.3784 (3)	0.8293 (7)	0.1813 (3)	6.4 (3)	
0.2993 (3)	0.8061 (10)	0.2103 (4)	8.1 (3)	
0.3120(3)	0.7580 (9)	0.3038 (4)	7.6 (3)	
0.4049 (3)	0.7280 (9)	0.3693 (3)	8·3 (4)	
0.4861 (3)	0.7505 (7)	0.3419 (3)	6.0 (3)	
0.7601 (2)	0.3811 (4)	0.0152 (2)	4·7 (1)	
0.8825 (3)	0.6468 (6)	0.0153 (3)	5.4 (2)	
0.8242 (2)	0.9495 (5)	0.0792 (2)	5.8 (2)	
0.7028 (2)	1.1170 (5)	0.1417 (2)	5.2 (2)	
0.5474 (2)	1.1218 (5)	0.2066 (2)	4·7 (1)	
0.4695 (3)	1.2193 (6)	0.1288 (3)	4·3 (2)	
0.4173 (2)	1.1944 (5)	0.0749 (2)	6.0 (2)	
0.4587 (3)	1.3559 (6)	0.2231(3)	5.7 (3)	

© 1990 International Union of Crystallography

^{*} To whom all correspondence should be addressed.

720

O(1)—C(2)	1.366 (4)	C(8)—O(20)	1.232 (6)
O(1)-C(10)	1.439 (4)	C(9) - C(10)	1.518 (6)
C(2)—C(3)	1.374 (6)	C(9)—O(21)	1.427 (5)
C(2)-C(7)	1.391 (6)	C(10) - C(11)	1.494 (5)
C(3)-C(4)	1.379 (5)	C(11) - C(12)	1-359 (5)
C(4)—C(5)	1.393 (6)	C(11)-C(16)	1.389 (6)
C(4)—O(17)	1.354 (5)	C(12)-C(13)	1.363 (6)
C(5)C(6)	1.381 (7)	C(13)—C(14)	1 344 (8)
C(5)-C(18)	1.502 (5)	C(14)—C(15)	1.363 (7)
C(6)—C(7)	1.418 (5)	C(15)—C(16)	1.378 (6)
C(6)—O(19)	1.358 (5)	O(21)—C(22)	1.344 (5)
C(7)C(8)	1.442 (6)	C(22)—O(23)	1.189 (5)
C(8)—C(9)	1.502 (6)	C(22)—C(24)	1·477 (7)
C(2) - O(1) - C(10)	115.7 (3)	C(9)—C(8)—O(20)	122.3 (4)
O(1) - C(2) - C(3)	116-4 (4)	C(8)—C(9)—C(10)	108-9 (3)
O(1)-C(2)-C(7)	121.3 (4)	C(8)—C(9)—O(21)	111-2 (3)
C(3) - C(2) - C(7)	122.3 (3)	C(10)-C(9)-O(21	109.7 (3)
C(2) - C(3) - C(4)	117.5 (4)	O(1)-C(10)-C(9)	106-3 (3)
C(3) - C(4) - C(5)	124.1 (4)	O(1)-C(10)-C(11	l) 107·9 (3)
C(3)-C(4)-O(17)	120.0 (4)	C(9)-C(10)-C(11) 116.0 (3)
C(5) - C(4) - O(17)	116.0 (3)	C(10) - C(11) - C(1)	2) 122.3 (4)
C(4) - C(5) - C(6)	116-4 (3)	C(10) - C(11) - C(1)	6) 118.8 (3)
C(4) - C(5) - C(18)	121.7 (4)	C(12) - C(11) - C(1)	6) 118.8 (4)
C(6) - C(5) - C(18)	122.0 (4)	C(11) - C(12) - C(12)	3) 121.1 (4)
C(5) - C(6) - C(7)	122.1 (4)	C(12) - C(13) - C(1)	4) 120.8 (4)
C(5) - C(6) - O(19)	118-8 (4)	C(13) - C(14) - C(14)	5) 119.4 (4)
C(7) - C(6) - O(19)	119-1 (4)	C(14) - C(15) - C(1)	6) 121·0 (4)
C(2) - C(7) - C(6)	117-5 (4)	C(11) - C(16) - C(16)	5) 118.9 (4)
(2) - (1) - (8)	$120 \cdot 7 (3)$	C(9) - O(21) - C(22)	2) 117·2 (3)
(0) - C(7) - C(8)	121.6 (4)	O(21) - C(22) - O(2)	23) 122.4 (4)
$C(7) \rightarrow C(8) \rightarrow C(9)$	113-3 (4)	O(21) - C(22) - C(2)	(4) 111.7 (3)
(1) - (1) - (1) - (1)	124-3 (4)	U(23) - C(22) - C(2)	(4) 125.9(4)

Fig. 1. ORTEP drawing of the title compound with 50% probability ellipsoids.

References

- Enraf-Nonius (1979). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- FANG, J. M., CHANG, C. F. & CHENG, Y. S. (1987). Phytochemistry, 26, 2559–2561.
- GABE, E. J. (1985). Crystallographic Computing III, edited by G. M. SHELDRICK, C. KRUGER & R. GODDARD, pp. 167–174. Oxford: Clarendon Press.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

Acta Cryst. (1990). C46, 720-722

Structure of 6-Azabicyclo[3.2.0]heptan-7-one

BY GÜNTER RECK

Central Institute of Molecular Biology, Academy of Sciences of GDR, 1115 Berlin-Buch, German Democratic Republic

JIŘÍ JEČNÝ* AND KAREL HUML

Institute of Macromolecular Chemistry, Czechoslovak Academy of Sciences, 162 06 Praha 6, Czechoslovakia

AND JINDŘICH SYMERSKÝ

Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, 166 10 Praha 6, Czechoslovakia

(Received 16 June 1989; accepted 16 October 1989)

Abstract. C₆H₉NO, $M_r = 111 \cdot 15$, monoclinic, $P2_1/c$, a = 10.778 (3), b = 6.147 (2), c = 9.673 (3) Å, $\beta = 109.18$ (2)°, V = 605.3 (8) Å³, Z = 4, $D_x = 1.22$ g cm⁻³, λ (Mo K α) = 0.71069 Å (graphite monochromator), $\mu = 1.02$ cm⁻¹, F(000) = 240, T = 298 K. Final R = 0.050 for 785 observed reflections

* To whom correspondence should be addressed.

0108-2701/90/040720-03\$03.00

with $I > 2\sigma(I)$. The four-membered lactam ring is planar, and with the five-membered ring adopts a nearly ideal envelope conformation. The shared C—C bond is significantly longer than the other C—C bonds in the molecule. 2₁-related molecules are connected by N—H…O bridges forming chains in the [010] direction. The structure forms channels running along the [001] direction, which probably

© 1990 International Union of Crystallography